

L26-T&LC29H (AI) Hardware Difference Introduction

GNSS Module Series

Version: 1.0

Date: 2025-05-19

Status: Released

At Quectel, our aim is to provide timely and comprehensive services to our customers. If you require any assistance, please contact our headquarters:

Quectel Wireless Solutions Co., Ltd.

Building 5, Shanghai Business Park Phase III (Area B), No.1016 Tianlin Road, Minhang District, Shanghai 200233, China

Tel: +86 21 5108 6236 Email: <u>info@quectel.com</u>

Or our local offices. For more information, please visit:

http://www.quectel.com/support/sales.htm.

For technical support, or to report documentation errors, please visit:

http://www.quectel.com/support/technical.htm.

Or email us at: support@quectel.com.

Legal Notices

We offer information as a service to you. The provided information is based on your requirements and we make every effort to ensure its quality. You agree that you are responsible for using independent analysis and evaluation in designing intended products, and we provide reference designs for illustrative purposes only. Before using any hardware, software or service guided by this document, please read this notice carefully. Even though we employ commercially reasonable efforts to provide the best possible experience, you hereby acknowledge and agree that this document and related services hereunder are provided to you on an "as available" basis. We may revise or restate this document from time to time at our sole discretion without any prior notice to you.

Use and Disclosure Restrictions

License Agreements

Documents and information provided by us shall be kept confidential, unless specific permission is granted. They shall not be accessed or used for any purpose except as expressly provided herein.

Copyright

Our and third-party products hereunder may contain copyrighted material. Such copyrighted material shall not be copied, reproduced, distributed, merged, published, translated, or modified without prior written consent. We and the third party have exclusive rights over copyrighted material. No license shall be granted or conveyed under any patents, copyrights, trademarks, or service mark rights. To avoid ambiguities, purchasing in any form cannot be deemed as granting a license other than the normal non-exclusive, royalty-free license to use the material. We reserve the right to take legal action for noncompliance with abovementioned requirements, unauthorized use, or other illegal or malicious use of the material.

Trademarks

Except as otherwise set forth herein, nothing in this document shall be construed as conferring any rights to use any trademark, trade name or name, abbreviation, or counterfeit product thereof owned by Quectel or any third party in advertising, publicity, or other aspects.

Third-Party Rights

This document may refer to hardware, software and/or documentation owned by one or more third parties ("third-party materials"). Use of such third-party materials shall be governed by all restrictions and obligations applicable thereto.

We make no warranty or representation, either express or implied, regarding the third-party materials, including but not limited to any implied or statutory, warranties of merchantability or fitness for a particular purpose, quiet enjoyment, system integration, information accuracy, and non-infringement of any third-party intellectual property rights with regard to the licensed technology or use thereof. Nothing herein constitutes a representation or warranty by us to either develop, enhance, modify, distribute, market, sell, offer for sale, or otherwise maintain production of any our products or any other hardware, software, device, tool, information, or product. We moreover disclaim any and all warranties arising from the course of dealing or usage of trade.

Privacy Policy

To implement module functionality, certain device data are uploaded to Quectel's or third-party's servers, including carriers, chipset suppliers or customer-designated servers. Quectel, strictly abiding by the relevant laws and regulations, shall retain, use, disclose or otherwise process relevant data for the purpose of performing the service only or as permitted by applicable laws. Before data interaction with third parties, please be informed of their privacy and data security policy.

Disclaimer

- a) We acknowledge no liability for any injury or damage arising from the reliance upon the information.
- b) We shall bear no liability resulting from any inaccuracies or omissions, or from the use of the information contained herein.
- c) While we have made every effort to ensure that the functions and features under development are free from errors, it is possible that they could contain errors, inaccuracies, and omissions. Unless otherwise provided by valid agreement, we make no warranties of any kind, either implied or express, and exclude all liability for any loss or damage suffered in connection with the use of features and functions under development, to the maximum extent permitted by law, regardless of whether such loss or damage may have been foreseeable.
- d) We are not responsible for the accessibility, safety, accuracy, availability, legality, or completeness of information, advertising, commercial offers, products, services, and materials on third-party websites and third-party resources.

Copyright © Quectel Wireless Solutions Co., Ltd. 2025. All rights reserved.

Safety Information

The following safety precautions must be observed during all phases of operation, such as usage, service, or repair of any terminal or mobile incorporating the module. Manufacturers of the terminal should notify users and operating personnel of the following safety information by incorporating these guidelines into all product manuals. Otherwise, Quectel assumes no liability for customers' failure to comply with these precautions.

Ensure that the product may be used in the country and the required environment, as well as that it conforms to the local safety and environmental regulations.

Keep away from explosive and flammable materials. The use of electronic products in extreme power supply conditions and locations with potentially explosive atmospheres may cause fire and explosion accidents.

The product must be powered by a stable voltage source, and the wiring shall conform to security precautions and fire prevention regulations.

Proper ESD handling procedures must be followed throughout the mounting, handling and operation of any devices and equipment that incorporate the module to avoid ESD damages.

About the Document

Document Information				
Title	L26-T&LC29H (AI) Hardware Difference Introduction			
Subtitle	GNSS Module Series			
Document Type	Difference Introduction			
Document Status	Released			

Revision History

Version	Date	Description
-	2025-04-25	Creation of the document
1.0	2025-05-19	First official release

Contents

Sa	fety Infor	rmat	tion	3
			ument	
Та	ble Index			6
1	Introdu	ıctio	on	7
	1.1.	Spe	ecial Mark	7
2			Difference Introduction	
	2.1.	Ger	neral Information	8
	2.2.	Pin	Assignment	g
	2.3.	Fea	atures	12
	2.4.	Mod	dule Performance	14
	2.4	l.1.	Power Consumption	14
	2.4	l.2.	Electrical Specification	14
	2.4	l.3.	RF Sensitivity	16
3	Append	dix F	References	17

Table Index

Table 1: Special Mark	7
Table 2: General Information	8
Table 3: Pin Description	10
Table 4: Features	12
Table 5: Power Consumption	14
Table 6: Absolute Maximum Ratings	14
Table 7: Recommended Operating Conditions	15
Table 8: Supply Current	
Table 9: Conducted RF Sensitivity	16
Table 10: Related Documents	17
Table 11: Terms and Abbreviations	17

1 Introduction

This document describes the hardware differences between L26-T and LC29H (AI) in terms of pin assignment, supported constellations, and module performance. The two modules are based on different chipsets from different vendors.

1.1. Special Mark

Table 1: Special Mark

Mark	Definition
•	The symbol indicates that a function or technology is supported by the module(s).

2 Hardware Difference Introduction

2.1. General Information

General information about the modules is presented in the table below, with differences highlighted in red.

Table 2: General Information

Module	Appearance	Packaging	Dimensions (mm)	Supply Voltage	е
			12.2 × 16.0 × 2.3	VCC	3.0-3.6 V
	QUECTEL				Typ. 3.3 V
L26-T	L26-T L26T-XXX	24 LCC pins		V BCKP	2.0-3.6 V
	Q1-AXXXX	24 200 pillo		V_DCKP	Typ. 3.3 V
				I/O Voltage	Following VCC
		24 LCC pins	12.2 × 16.0 × 2.5	VCC	3.1–3.6 V
	LC29H X LC29HXXXX Q1-AXXXXX				Typ. 3.3 V
				V DOKD	2.2–3.6 V
LC29H (AI)				V_BCKP	Typ. 3.3 V
				I/O Voltage ¹	Typ. 2.8 V
					Typ. 1.8 V

_

¹ For D_SEL1, D_SEL2 and UART2, the voltage domain is 1.8 V on LC29H (AI).

2.2. Pin Assignment

The differences between the pins of the L26-T and LC29H (AI) modules are listed below.

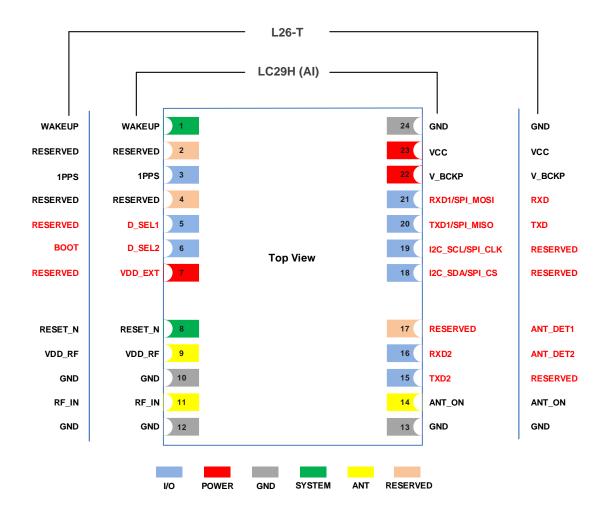


Figure 1: Pin Assignment

Pins highlighted in red (e.g., pin 5) have different functions.

Table 3: Pin Description

Pin No.	Pin Name		Description	
PIN NO.	L26-T	LC29H (AI)	Description	
1	WAKEUP	WAKEUP	On L26-T, the pin is used for waking up the module from the Standby mode. On LC29H (AI), the pin is used for waking up the module from the Backup mode.	
2	RESERVED	RESERVED	Reserved.	
3	1PPS	1PPS	One pulse per second.	
4	RESERVED	RESERVED	Reserved.	
5	RESERVED	D_SEL1	On L26-T, the pin 5 is RESERVED and the pin 6 is used for controlling module startup mode.	
6	воот	D_SEL2	On LC29H (AI), pins 5 and 6 are used for selecting UART1/SPI/I2C (the interface for communication and firmware upgrade).	
7	RESERVED	VDD_EXT	On L26-T, the pin is RESERVED. On LC29H (AI), the pin is used for providing 2.8 V for external circuit.	
8	RESET_N	RESET_N	The pin is used for resetting the module.	
9	VDD_RF	VDD_RF	On L26-T, the pin is used to supply power for external RF components. On LC29H (AI), the pin is used to supply power for external RF components.	
10	GND	GND	Ground.	
11	RF_IN	RF_IN	GNSS antenna interface.	
12	GND	GND	Ground.	
13	GND	GND	Ground.	
14	ANT_ON	ANT_ON	On L26-T, the pin is used as the power control for external active antenna with antenna detection or LNA.	
			On LC29H (AI), the pin is used as the power control for external LNA and active antenna.	

Pin No.	Pin Name		Description		
PIN NO.	L26-T	LC29H (AI)	Description		
15	RESERVED	TXD2	On L26-T, the pin 15 is RESERVED and the pin 16 is used as external active antenna detection 2.		
16	ANT_DET2	RXD2	On LC29H (AI), pins 15 and 16 are used as the UART2 interface that supports system debugging data. The I/O voltage domain is 1.8 V.		
17	ANT_DET1	RESERVED	On L26-T, the pin used as external active antenna detection 1. On LC29H (AI), the pin is RESERVED.		
18	RESERVED	I2C_SDA/ SPI_CS	 On L26-T: Pins 18 and 19 are RESERVED. Pins 20 and 21 are used as the UART interface for standard NMEA message, PSTM message and firmware upgrade. 		
19	RESERVED	I2C_SCL/ SPI_CLK	 On LC29H (AI): Pins 18 and 19 are used as the I2C interface for standard NMEA message, RTCM message, binary data, 		
20	TXD	TXD1/ SPI_MISO	 PAIR/PQTM message and firmware upgrade. Pins 20 and 21 are used as the UART1 interface for standard NMEA message, RTCM message, binary data, PAIR/PQTM message and firmware upgrade. 		
21	RXD	RXD1/ SPI_MOSI	 Pins 18–21 are used as the SPI for standard NMEA message, RTCM message, binary data, PAIR/PQTM message and firmware upgrade. 		
22	V_BCKP	V_BCKP	Backup power supply for backup domain.		
23	VCC	VCC	Main power supply.		
24	GND	GND	Ground.		

NOTE

For detailed differences in pin description between the two modules, see <u>documents [1]</u> and [2] <u>hardware design</u>.

2.3. Features

L26-T features high precision timing and the 1PPS timing accuracy is < 13.6 (\pm 6.8 ns) @ 1 σ . The module supports GPS + GLONASS + Galileo by default.

LC29H (AI) features dual-band capability and the accuracy of 1PPS signal is 80 ns (RMS). It supports GPS + GLONASS + Galileo + BDS + QZSS + NavIC by default.

Features supported by the two modules are listed in the table below.

Table 4: Features

Features		L26-T	LC29H (AI)
Grade	Industrial	•	•
Grade	Automotive	-	-
	Standard Precision GNSS	•	•
	High Precision GNSS	-	-
Category	DR	-	-
	RTK ²	-	-
	Timing	•	-
	UART	•	•
Communication Interfaces	SPI	-	•
	I2C	-	•
	Additional LNA	•	•
	Additional Filter	•	•
Integrated Features	RTC Crystal	•	•
	TCXO Oscillator	•	•
	6-axis IMU	-	-
Constellations	Number of Concurrent GNSS	3 + QZSS	5 + QZSS

² For LC29H (AI), RTK function can be implemented using an external position engine running on external host, while the module will provide the raw data only.

_

Features			L26-T	LC29H (AI)
and Frequency Bands	GPS	L1 C/A	•	•
Danas	GP5	L5	-	-
	GLONASS	L1	•	•
	Calilaa	E1	•	•
	Galileo	E5a	-	-
	DD0	B1I	•	•
	BDS	B2a	-	-
	QZSS	L1 C/A	•	•
		L5	-	-
	NavIC	L5	-	•
SBAS		L1	•	•
Temperature Range				
Physical Characteristics			Size: (12.2 ±0.15) mm × (16.0 ±0.15) mm × (2.3 ±0.20) mm	
			Weight: Approx. 0.9 g	

NOTE

For more information about constellation configurations of the two modules, see <u>documents [3]</u> and <u>[4]</u> <u>protocol specification</u>.

2.4. Module Performance

2.4.1. Power Consumption

Table 5: Power Consumption

	L26-T	LC29H (AI)	
Power Consumption ³	GPS + GLONASS + Galileo	GPS + GLONASS + Galileo + BDS + QZSS + NavIC	Unit
Acquisition	76	16	mA
Tracking	73	16	mA
Standby mode	12	-	μΑ
Backup mode	7	51	μΑ

2.4.2. Electrical Specification

Table 6: Absolute Maximum Ratings

Parameter	Description		L26-T		LC29H (AI)		- Unit
			Min.	Max.	Min.	Max.	Offic
VCC	Main Power Supply Voltage		-0.3	3.6	-0.3	4.3	V
V_BCKP	Backup Supply Voltage		-0.3	3.6	-0.3	4.3	V
	Input Voltage at I/O Pins	VI/O = VCC	-0.2	VCC + 0.3	-	-	V
V _{IN} _IO		V _I /O = 2.8 V	-	-	-0.3	3.08	V
		V ₁ /0 = 1.8 V	-	-	-0.3	1.98	V
P _{RF_IN}	Input Power at RF_IN		-	0	-	0	dBm
T_storage	Storage Temperature		-40	90	-40	90	°C

_

³ Tested at room temperature, with typical operating voltage, and satellite signal of -130 dBm configured by the instrument.

Table 7: Recommended Operating Conditions

Name	Davamatav	Description		L26-T		LC29H (AI)			11.2	
V_BCKP Backup Supply Voltage 2.0 3.3 3.6 2.2 3.3 3.6 ∨ VDD_EXT Power Output Voltage - - - - 2.8 - ∨ IO_Domain Digital I/O Pin Voltage Domain - VCC - - 2.1 2.8 3.08 ∨ VIL Digital I/O Pin Voltage VIVO = VCC -0.3 - 0.8 - - - V VIL Low-level Input Voltage VVO = 2.8 V - - - - - - V VIH High-level Input Voltage VVO = 2.8 V - - - - - - - - - - V	Parameter			Min.	Тур.	Max.	Min.	Тур.	Max.	- Unit
VDD_EXT Power Output Voltage - - - 2.8 - V IO_Domain Digital I/O Pin Voltage Domain - - - - 2.1 2.8 3.08 V VIL Digital I/O Pin Voltage V/vo = VCC -0.3 - 0.8 - - - V VIL Low-level Input Voltage V/vo = 2.8 V - - - - - 0.3 0 0.7 V VIH Digital I/O Pin High-level Input Voltage V/vo = 2.8 V - - - - - - - - V VIH High-level Input Voltage V/vo = 1.8 V -	VCC	Main Power Sup	oply Voltage	3.0	3.3	3.6	3.1	3.3	3.6	V
IO_Domain Digital I/O Pin Voltage Domain - VCC -	V_BCKP	Backup Supply \	Voltage	2.0	3.3	3.6	2.2	3.3	3.6	V
Digital I/O Pin Voltage Domain - VCC -	VDD_EXT	Power Output Vo	oltage	-	-	-	-	2.8	-	V
VIL Digital I/O Pin VI/O = VCC -0.3 - 0.8 - - - V	10. Danasin	Digital I/O Dig V-II-			V/00		2.1	2.8	3.08	V
$V_{IL} \ \ \ \ \ \ \ \ \ \ \ \ \ $	IO_Domain	Digital I/O Pin Vo	oitage Domain	- v	VCC	-	1.62	1.8	1.98	V
$V_{IL} \ \ \ \ \ \ \ \ \ \ \ \ \ $		Digital I/O Pin	V _{I/O} = VCC	-0.3	-	0.8	-	-	-	V
$V_{I/O} = 1.8 \text{ V} \qquad - \qquad - \qquad - \qquad -0.3 \qquad 0 \qquad 0.63 \qquad V$ $V_{I/O} = V_{I/O} = V_{I/O} = V_{I/O} = 0.00 \qquad - \qquad - \qquad - \qquad 1.75 \qquad - \qquad 3.00 \qquad V$ $V_{I/O} = 1.8 \text{ V} \qquad - \qquad - \qquad - \qquad 1.17 \qquad - \qquad 2.1 \qquad V$ $V_{I/O} = V_{I/O} = V_{I/O} = 0.00 \qquad - \qquad 0.00 \qquad - \qquad - \qquad V_{I/O} = 0.00 \qquad - \qquad - \qquad - \qquad V_{I/O} = 0.00 \qquad - \qquad$	VIL	Low-level	V _{I/O} = 2.8 V	-	-	-	-0.3	0	0.7	V
$V_{IH} \qquad \begin{array}{c ccccccccccccccccccccccccccccccccccc$		Input Voltage	V _{I/O} = 1.8 V	-	-	-	-0.3	0	0.63	V
$V_{IH} \qquad \begin{array}{ccccccccccccccccccccccccccccccccccc$		High-level	V _{I/O} = VCC	2.0	-	VCC + 0.3	-	-	-	V
$V_{VO} = 1.8 \text{ V}$ 1.17 - 2.1 V $V_{VO} = VCC$ 0.4 V	VIH		V _{I/O} = 2.8 V	-	-	-	1.75	-	3.08	V
Digital I/O Pin V _{I/O} = VCC 0.4 V			V _{I/O} = 1.8 V	-	-	-	1.17	-	2.1	V
		Digital I/O Pin Low-level Output Voltage	V _{I/O} = VCC	-	-	0.4	-	-	-	V
Vol Low-level V _{I/O} = 2.8 V 0.35 V	VoL		V _{I/O} = 2.8 V	-	-	-	-	-	0.35	V
Output Voltage $V_{\text{I/O}} = 1.8 \text{ V}$ 0.45 V			V _{I/O} = 1.8 V	-	-	-	-	-	0.45	V
V _{I/O} = VCC		Digital I/O Pin High-level Output Voltage	V _{I/O} = VCC	VCC - 0.4	-	-	-	-	-	V
	Vон		V _{I/O} = 2.8 V	-	-	-	2.1	-	-	V
Output Voltage $V_{I/O} = 1.8 \text{ V}$ 1.35 V			V _{I/O} = 1.8 V	-	-	-	1.35	-	-	V
Low-level Input Voltage -0.3 - 0.35 -0.3 - 0.1 V	DECET N	Low-level Input Voltage		-0.3	-	0.35	-0.3	-	0.1	V
RESET_N High-level Input Voltage	KESEI_N	High-level Input Voltage		0.65	-	1.3	1.8	3.3	3.6	V
Low-level Output Voltage 0.3 0 0.7 V	MAKELIS	Low-level Output Voltage		-	-	-	-0.3	0	0.7	V
WAKEUP High-level Input Voltage 2.1 - VCC 3.0 3.3 3.6 V	WAKEUP	High-level Input Voltage		2.1	-	VCC	3.0	3.3	3.6	V
VDD_RF	VDD_RF	VDD_RF Output Voltage		-	VCC	-	3.1	3.3	3.6	V
I _{VDD_RF} VDD_RF Output Current - 100 100 mA	I _{VDD_RF}	VDD_RF Output Current		-	100	-	-	-	100	mA
T_operating	T_operating	erating Operating Temperature		-40	25	+85	-40	25	+85	°C

NOTE

Operation beyond the "Operating Conditions" is not recommended and extended exposure beyond the "Operating Conditions" may affect device reliability.

Table 8: Supply Current

Donomotor	Description	Condition	L	26-T	LC29H (AI)		
Parameter	Description	Condition	I _{Typ.} ⁴	I _{PEAK} ⁴	I _{Typ.} ⁴	I _{PEAK} ⁴	
I _{VCC} ⁵	Current at VCC	Acquisition	76 mA	112 mA	16 mA	61 mA	
		Tracking	73 mA	112 mA	16 mA	65 mA	
		Standby mode	7 μΑ	29 µA	-	-	
	Current at V_BCKP	Continuous mode	78 µA	111 µA	123 µA	202 μΑ	
I _{V_BCKP} 6		Standby mode	5 μΑ	25 µA	-	-	
		Backup mode	7 μΑ	43 µA	51 µA	68 µA	

2.4.3. RF Sensitivity

Table 9: Conducted RF Sensitivity

	L26-T	LC29H (AI) ⁷	Unit
Configuration	GPS + GLONASS + Galileo	GPS + GLONASS + Galileo + BDS + QZSS + NavIC	
Acquisition	-145	-150	dBm
Reacquisition	-153	-160	dBm
Tracking	-162	-165	dBm

⁴ Tested at room temperature, with typical operating voltage, and satellite signal of -130 dBm configured by the instrument.

⁵ Used to determine the maximum current capability of power supply.

⁶ Used to determine the required battery current capacity.

⁷ Tested with an external LNA with 17 dB gain and 0.55 dB noise figure.

3 Appendix References

Table 10: Related Documents

Doc	Document Name				
[1]	Quectel LC29H Series Hardware Design				
[2]	Quectel_L26-P&L26-T_Hardware_Design				
[3]	Quectel_L89(HD)&LC29H(AI)_GNSS_Protocol_Specification				
[4]	Quectel_L26-DR&L26-P&L26-T&LC98S_Series_GNSS_Protocol_Specification				

Table 11: Terms and Abbreviations

Abbreviation	Description
1PPS	1 Pulse Per Second
BDS	BeiDou Navigation Satellite System
Galileo	Galileo Satellite Navigation System (EU)
GLONASS	Global Navigation Satellite System (Russia)
GPS	Global Positioning System
GND	Ground
GNSS	Global Navigation Satellite System
I/O	Input/Output
I2C	Inter-integrated Circuit
LCC	Leadless Chip Carrier (package)
NavIC	Indian Regional Navigation Satellite System
NMEA	NMEA (National Marine Electronics Association) 0183 Interface Standard
	. ,

Abbreviation	Description
PAIR	Proprietary Protocol of Airoha
PI	Power Input
PO	Power Output
PQTM	Quectel Proprietary Message
QZSS	Quasi-Zenith Satellite System
RF	Radio Frequency
RTCM	Radio Technical Commission for Maritime Services
SPI	Serial Peripheral Interface
UART	Universal Asynchronous Receiver/Transmitter